FINAL REPORT

Artificial Turf Study

Leachate and Stormwater Characteristics

Connecticut Department of Environmental Protection July 2010

TABLE OF CONTENTS

1. Project Overview
2. Site Selection
3. Artificial Field Systems
4. Sampling Protocols
5. Field Sampling Methods
6. DEP Stormwater Sampling Results6a) Method 624/6257b) Pesticides and PCBs7c) pH, Hardness and Metals7d) Aquatic Toxicity11
7. CAES Laboratory Headspace and Leaching Results11
8. Discussion13a) Potential Contaminants13b) Organic Compounds13c) Metals14
9. Environmental Risk Assessment
10. Environmental Risk Assessment (Literature Review)17a) Overall Surface Water Contamination Risk171) Organic Compounds172) Metals183) Aquatic Toxicity19b) Groundwater Contamination Risk201) Organic Compounds202) Metals202) Metals20
11. Conclusions

References

TABLES

Table A: Summary of samples collected 6
Table B: Tentatively and unidentified compound s from 625
Table C: Toxicity information on tentatively identified compounds9
Table D: Stormwater sample results
Table E: Toxicity results from stormwater samples11
Table F: Concentration (ng /ml) of volatile compounds in headspace over crumb rubber samples analyzed at CAES
Table G: Concentration (ng /ml) of volatile compounds in headspace over crumb rubber samples aged at CAES12
Table H: Summary of leachate results
Table I: Average zinc concentrations in stormwater

APPENDICES

Appendix A: Stormwater Sampling and Analysis Documentation

Appendix B: Stormwater Treatment Measures, UNH Fact Sheets

1. PROJECT OVERVIEW

In December 2008, four Connecticut State agencies, the University of Connecticut Health Center, The Connecticut Agricultural Experiment Station, the Connecticut Department of Environmental Protection and the Connecticut Department of Public Health, agreed to jointly develop and implement a study to evaluate the health and environmental impacts associated with artificial turf fields. The overall objectives of the study were to:

- 1. Identify comprehensively substances, including organic compounds and elements, which derive from the crumb rubber infill used on synthetic turf fields, as well as currently available alternative infill products, through off-gassing and leaching pathways;
- 2. Establish the level of chemical variability for infill at individual synthetic turf fields and between different synthetic fields in Connecticut;
- 3. Measure levels of off-gassed compounds and airborne particulate matter in the normal breathing zone of children during a "simulated worse-case scenario" at athletic field(s) in Connecticut (inhalation risk);
- 4. Measure levels of leached compounds in storm water runoff collected in actual field conditions (environmental risk); and
- 5. Utilize collected data to make environmental and public health risk assessments regarding outdoor artificial turf fields.

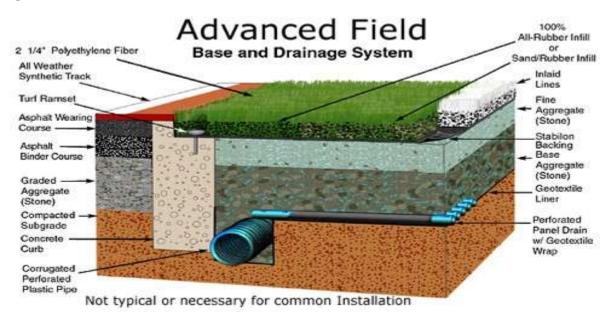
The Department of Environmental Protection ("DEP") was specifically tasked with: (1) collecting stormwater runoff samples from the four artificial turf fields selected for the study; (2) analyzing the stormwater samples for levels of compounds leached from the artificial turf materials; (3) scientifically evaluating the laboratory analysis results; and (4) developing an environmental risk assessment for the artificial turf fields.

This report is not intended to be a comprehensive investigation of the environmental risks associated with artificial turf fields, but a basic assessment of water quality data collected from a limited number of fields during a three-month period. It should be understood, that the ultimate conclusions in the report are based on eight stormwater sampling events, essentially a "snapshot", of an ongoing chemical and physical process.

2. SITE SELECTION

The four artificial turf fields selected for DEP's stormwater sampling plan were the same fields sampled in the summer of 2009 by the University of Connecticut Health Center for airborne contaminants. Specific field selection criteria included: crumb rubber infill, owner permission, installation date, different manufacturers and site location. The owners of the selected four fields provided engineered drainage plans to DEP. DEP staff reviewed the drainage plans and established sampling points that <u>only</u> collected stormwater draining from the artificial turf field.

3. ARTIFICIAL TURF FIELD SYSTEMS


The artificial turf fields selected were installed by different engineering, synthetic turf and construction companies, but are similar in general design. The fields are composed of a top layer

of polyethylene or polypropylene grass fibers, with a crumb rubber (sometimes intermixed with sand) infill layer, and underlain by crushed stone/gravel with a piped drainage system (see Figures 1 and 2 below).

Figure 1.

Figure 2. (source: www.suncountrysystems.com/.../syntheticgrass.jpg)

The critical field component for this study is the infill layer, which includes crumb rubber materials produced from recycled tires. The infill layer can be composed of entirely styrene-butadiene rubber (SBR) granules, produced by ambient and/or cryogenic grinding process, or intermixed with quartz crystals (sand). The assumption for this study, and the sampling plan, is that precipitation lands on the surface of the artificial turf field, flows downward through the infill and rock/gravel layers, collects in the subsurface drain pipes and then ultimately discharges from the field. The artificial turf drainage pipes often discharge to existing subsurface drainage

systems at catch basin and/or manhole connections. The subsurface drainage pipes utilized under the fields can be solid or perforated.

4. SAMPLING PROTOCOLS

DEP staff reviewed EPA protocols and previous artificial turf leaching studies and established the following stormwater sampling plan:

- 1. Sampling Plan
 - a. One sampling station was established at each of the four artificial turf fields;
 - b. The sampling stations were located at a point where runoff was only from the artificial turf field;
 - c. The size of the drainage area (in square feet) to each sampling station was calculated;
 - d. Grab samples were collected and delivered to the laboratory by qualified individuals during the fall of 2009; and
 - e. Samples were analyzed by an EPA certified laboratory.
- 2. Storm Event Criteria
 - a. Samples were collected from discharges resulting from a storm event that was greater than 0.1 inch in magnitude and that occurred approximately 72 hours after any previous storm event of 0.1 inch or greater;
 - b. Grab samples were collected during the first 30 minutes of a storm event discharge, or as close thereto as possible, and were completed as soon as possible;
 - c. The following information was collected for the storm events monitored:
 - i. The date, temperature, time of the start of the discharge, time of sampling, and magnitude (in inches) of the storm event sampled; and
 - ii. The duration between the storm event sampled and the end of the previous measurable (greater than 0.1 inch rainfall) storm event.
- 3. Sampling Procedures
 - a. Grab sample collection, chain of custody and laboratory delivery were performed in accordance with the EPA NPDES Stormwater Sampling Guidance Document (EPA 833-B-92-001, 7/92); <u>http://www.epa.gov/npdes/pubs/owm0093.pdf</u>
 - b. Laboratory analysis of grab samples included the following:
 - i. Acute Toxicity 48 hour LC50 *Daphnia pulex* & 48 hour and 96 hour LC50 *Pimephales promelas* (EPA 821-R-02-012).
 - ii. EPA Method 130.1, Hardness, Total (mg/L as CaCO₃)
 - iii. EPA Method 150.2, pH
 - iv. EPA Method 200.7, (Antimony, Arsenic, Barium, Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Mercury, Molybdenum, Nickel, Selenium, Thallium, Vanadium and Zinc)
 - v. EPA Method 624, Volatile Organic Compounds
 - vi. EPA Method 625, Semivolatile Organic Compounds (TIC's for Benzothiazole, Butylated hydroxyanisole (BHA), n-hexadecane and 4-(toctyl) phenol.

5. FIELD SAMPLING METHODS

In September of 2009, the stormwater sampling plan was implemented at the four artificial turf fields: Field A, Field B and Field D all constructed in 2007; and Field C constructed in 2005. Stormwater samples were successfully collected from Fields A, C and D. Field B was visited during five precipitation events and no discharge from the established sampling station was observed. A total of eight stormwater samples were collected from Fields A, C and D between 9/11/09 and 12/3/09. Based on DEP staff observations, Fields B and C did not appear to regularly discharge runoff during or after precipitation events, while Fields A and D discharged during and after every precipitation event monitored. For the one sample collected from Field C, DEP staff was fortunate to experience an extremely hard (downpour) rain event that exceeded the infiltration rate of the perforated underdrain system. DEP staff reviewed the engineered drainage plans and determined that Fields B and C utilized perforated drainage pipes causing the stormwater to normally infiltrate into the soil beneath the fields. Fields A and D utilized solid drainage pipes, which discharge the stormwater to local drainage systems at the sites, similar to an impervious surface.

For each precipitation event, stormwater collected at the fields was sampled for total metals, hardness, pH, volatile organic compounds, semi-volatile organic compounds (including rubber Tentatively Identified Compounds found by The Connecticut Agricultural Experiment Station in a 2007 study), pesticides/ polychlorinated biphenyls (PCBs) and acute aquatic toxicity (48 hours for *Daphnia pulex* (Dp)and 96 hours for *Pimephales promelas*(Pp)). Stormwater samples were analyzed at the Connecticut Department of Public Health Laboratory, Environmental Chemistry Division, Inorganic Chemistry Section, 10 Clinton Street Hartford, CT 06106 for pH, Hardness and Total Metals; at Phoenix Environmental Laboratories, Inc. 587 East Middle Turnpike, Manchester, CT 06040 for volatile organic compounds, semi-volatile organic compounds, pesticides, PCBs; and at GZA GeoEnvironmental, Inc., 120 Mountain Avenue, Bloomfield, CT 06002 for acute toxicity. A summary of the tests performed on the samples collected are shown in Table A below.

Location	Date	pH	Hardness	Metals	Volatiles	Semivolatiles	Pesticides and PCBS	Aquat Dp 48 hrs	t <mark>ic Toxicity</mark> Pp 48 hrs	7 LC50 Pp 96 hrs
Field C	9/11/09				\checkmark		\checkmark			
Field A	9/27/09	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
Field A	10/7/09	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
Field A	10/18/09		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Field D	10/18/09	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Field D	10/28/09	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
Field D	11/20/09	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark
Field D	12/3/09		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark

Table A

6. DEP STORMWATER SAMPLING RESULTS

a) Method 624/Method 625 and Tentatively Identified Compounds(TICs):

No standard volatile or semi-volatile organic compounds were detected in any sample using the EPA 624 and 625 analytical methods. All samples were analyzed for non-standard semi-volatile organic compounds, including the following rubber compounds benzothiazole, butylated hydroxyanisole (BHA), n-hexadecane and 4-(t-octyl) phenol. The semi-volatile analysis detected the analytical peaks of twenty-two compounds, of which nine were tentatively identified (see Table B below). The concentrations of these compounds ranged from 1 ug/l to 150 ug/l. The grey columns in Table B correspond to the three stormwater samples determined to be acutely toxic. Table C details the aquatic toxicity information found for the other tentatively identified compounds listed in Table B.

b) Pesticides and PCBs (Method 608)

Pesticides

Pesticides were detected in the samples of stormwater collected on September 11, 2009 from Field C and on October 28, 2009 from Field D. DEET and heptachlor were detected at estimated concentrations of 6.9 ug/l and 0.18 ug/l, respectively. It is assumed that these substances were not derived from the artificial turf, but were a result of pesticide applications at the site.

PCBs

No PCBs were detected during the stormwater sampling events.

c) pH, Hardness and Metals:

The results from the pH, hardness and metals analysis conducted on the stormwater runoff from the fields are presented in the table below.

pН

The pH of the stormwater samples ranged from 6.6 to 8.0. The pH of stormwater in Connecticut is generally considered to be between 5.6 and 6.0. Based on this fact, the pH of the stormwater samples are more alkaline than expected. It is possible that the crushed stone used as a sub-base in the fields affected the pH of the stormwater as it drained through the field.

The pH alone does not exhibit toxic effects unless it falls below 5 or is higher than 10. However, metals are often more soluble and toxic at lower pH's. The observed neutral pH in the stormwater may have reduced the concentrations and toxicity of the metals leaching from the fields.

TABLE B										
Location:			Field C	Field A	Field A	Field A	Field D	Field D	Field D	Field D
Sample #			A	B	C	E	D	F	G	H
Sample date			9/11/2009	9/27/2009	10/7/2009	10/18/2009	10/18/2009	10/28/2009	11/20/2009	12/3/2009
Parameter:	Tentatively identified Compounds	CAS#								
Heptachlor	compounds	CA3#					<0.10	0.18	NT	<0.05
Retention T	imos (min)						<0.10	0.10		<0.05
3.55	inies (iniii)		6.2							
5.05 5.04			0.2		150					
6.12			4.3		150					
6.63			4.3							9.5
6.81					4.1					9.0
6.83	2- propyl-methyl pentanoic acid	22632-59-3			4.1 14	6.6				
6.85	Benzothiazole	95-16-9		1	4.9	0.0				
6.88	Denzounazoie	90-10-9		1	6.1					
7.07					0.1				5.1	
7.08	methyl 2alpha -D-xylofuranoside	32469-86-6				5.8			5.1	
7.10	2 ethyltetra hydro thiopene	1551-32-2				28				
7.13	4-methyl4-Heptanol	598-01-6				7.4				
7.15	2- butyl tetrathydrothiopene	1613-49-6				12				
7.77						12				10
7.96								6.6		10
8.13					7.4			0.0		
8.23									7	
	Benzamide, N-N- diethyl-3-									
9.48	methyl	134-62-3	6.9							
9.56	2(3H)- Benzo thiazolone	934-34-9			5.7					
10.28						4.1				
12.60	2-2-7 trimethyl-3-Octyne	55402-13-6					4.5			
16.88			8.4							

TABLE C

Location: Sample #	_		Max Concentration	Location	Acute Water Quality Criteria	Chronic Water Quality Criteria	Comments
Sample date Parameter: Heptachlor Retention Ti 3.55 5.04	Tenatively identifeid Compounds	CAS#	0.18 6.2 150	D A A	0.26	.0038	CT WQS 2002
6.12 6.63 6.81 6.83 6.85 6.85	2- propyl-methyl pentanoic acid Benzothiazole	22632-59-3 95-16-9	4.3 9.5 4.1 14 4.9 6.1	D A A A A	2812.5	312.5	Toxicity info on pentanoic acid tier 2 One data point tier 2
7.07 7.08 7.10 7.13 7.15 7.77	methyl 2alpha -D-xylofuranoside 2 ethyltetra hydro thiopene 4-methyl4-Heptanol 2- butyl tetrathydrothiopene	32469-86-6 1551-32-2 598-01-6 1613-49-6	5.1 5.8 28 7.4 12 10	D A A A D D			No data No data No data on Heptanol either No data
7.96 8.13 8.23 9.48 9.56	Benzamide, N-N- diethyl-3- methyl 2(3H)- Benzo thiazolone	134-62-3 934-34-9	6.6 7.4 7 6.9 5.7	A D C A	89.3 47.3	9.9 8.1	DEET tier 2 Different CAS # 149304 tier 2
10.28 12.60 16.88	2-2-7 trimethyl-3-Octyne	55402-13-6	4.1 4.5 8.4	A D			No data

Hardness

The hardness of the stormwater samples ranged from 8 to 59 mg/L. Hardness in the range of 0 to 60 mg/L is generally termed "soft". Hardness can also influence the toxicity of metals; the greater the hardness, the less toxic the metals. It is not expected that the observed hardness had much effect on metal concentrations in the stormwater.

Metals

The metal parameters which had results reported above the detection limit are listed in Table C below. Silver, molybdenum, thallium and beryllium were analyzed but were below the detection limit for every sample. In Table C, the values bolded and underlined exceed Connecticut's acute aquatic life criteria. Metal concentrations in excess of the acute aquatic life criteria for more than one hour could cause mortality to the more sensitive organisms in the receiving surface waters. The values bolded meet or exceed Connecticut's chronic aquatic life criteria. Average metal concentrations which exceed the chronic life criteria for more than 4 continuous days are expected to impact the ability of organisms to survive, reproduce or grow. EPA recommends that neither of these criteria be exceeded more than once in three years (EPA TSD EPA/505/2-90-001). The samples highlighted in grey also exhibited acute toxicity. Since stormwater is an intermittent discharge, the acute criteria for aquatic toxicity are more applicable. A review of the data indicates that only zinc consistently violates the acute criteria.

Location	Sample #	Sample date	рН	Hardness	Conductivity	Cu ug/l	Zn ug/l	Ba ug/l	Fe ug/l	Al ug/l	V ug/l
Field C 2005	A	9/11/09	6.6	NA	18	4	<u>150</u>	4	320	210	40
Field A 2007	В	9/27/09	6.6	8	20	1.5	<u>130</u>	1.5	20	25	1.5
Field A 2007	С	10/7/09	7.5	29	65	1.5	10	6	50	160	5
Field A 2007	Е	10/18/09	7.5	39	86	1.5	20	7	20	60	1.5
Field D 2007	D	10/18/09	7.6	53	130	5	<u>260</u>	220	170	120	6
Field D 2007	F	10/28/09	7.9	59	157	4	50	8	80	80	8
Field D 2007	G	11/20/09	8	56	153	4	30	7	160	110	9
Field D 2007	н	12/3/09	8	58	147	4	20	5	170	100	8
		acute	<5.0			<u>14.3</u>	<u>65</u>	<u>2000</u>		<u>780</u>	<u>150</u>
		standard chronic standard	>10 <5.0 >10			4.8	65	220	1000	87	44

TABLE D

d) Aquatic Toxicity

The toxicity tests conducted on the stormwater measured both an LC50 value (the concentration of stormwater that is lethal to 50% of the test organisms) and an NOAEL (No Observable Acute Effect Level, the concentration of stormwater where no acute toxicity is observed). Toxicity tests conducted on the samples of stormwater collected indicate that 3 out of 8 sampling events were acutely toxic. Acute toxicity is observed when there is less than 90% survival of the test organisms in the undiluted effluent. The frequency of occurrence for acute toxicity was at least one sample per field. Where both *Pimephales promelas*(Pp) and *Daphnia pulex*(Dp) toxicity tests were conducted, the fathead minnow (*Pimephales promelas*) seemed to be slightly more sensitive to the contaminants in the stormwater discharge. Due to laboratory issues, the test duration for the fish, *Pimephales promelas*, for the October 18, 2009 Field A and Field D samples was limited to only 48 hours. If the test duration was extended to 96 hours, both samples could have had an LC50 value less than the 100% reported. The results for the aquatic toxicity testing conducted are shown in Table E below.

Location:	Sample #	Sample date	Dp % Surv 100%	Dp LC50	Dp NOAEL	Pp % Surv in 100%	Pp LC50	Pp NOAEL
Field C								
2005	А	9/11/2009	65.0	>100	12.5	NT	NT	NT
Field A 2007	В	9/27/2009	70.0	>100	50	45	93.89	50
Field A 2007	с	10/7/2009	100.0	>100	100	100	>100	100
Field A 2007	E	10/18/2009	100.0	>100	100	96	>100	100
Field D 2007	D	10/18/2009	70.0	>100	6.25	50	100	25
Field D 2007	F	10/28/2009	100.0	>100	100	95	>100	100
Field D 2007 Field D	G	11/20/2009	100.0	>100	100	100.0	>100	100
2007	н	12/3/2009	100.0	>100	100	95	>100	100
		acutely toxic						

TABLE E

7. CAES LABORATORY HEADSPACE AND LEACHING RESULTS

The CAES performed both headspace (off-gassing) and SPLP (Standard Precipitation Leaching Procedure) evaluations on seventeen samples of crumb rubber materials used as infill for artificial turf fields. These studies indicated the primary contaminants likely to be found in the stormwater coming from these sites. Organic compounds were identified by head space analysis, with results shown in Table F below. The other organic compounds detected from the crumb rubber infill, but not quantified in the analysis, included hexadecane, fluoranthene, phenanthrene and pyrene.

DEP Sample ID	1-methyl naphthalene	2-methyl naphthalene	4-(t-octyl)- phenol	benzothiazole	butylated hydroxytoluene	naphthalene	butylated hydroxyanisole
A1001	0.13	0.19	0.28	3.98	n.d.	0.42	0.50
A1002	0.11	0.15	0.31	5.59	n.d.	0.31	0.61
A1003	0.03	0.07	0.19	8.67	n.d.	0.10	0.68
A1004	0.04	0.07	0.31	6.52	0.15	0.16	0.69
A1005	0.08	0.09	0.23	2.35	0.09	0.23	0.46
A1006	0.08	0.14	0.31	4.89	0.12	0.23	0.75
A1007	0.13	0.20	0.52	3.50	n.d.	0.23	0.69
A1008	0.06	0.10	0.18	1.93	n.d.	0.22	0.43
A1009	0.03	0.06	0.13	2.89	0.13	0.08	0.50
A1010	0.07	0.11	0.22	4.91	0.13	0.20	0.64
A1011	0.04	0.06	0.30	3.94	0.16	0.11	0.62
A1012	0.08	0.14	0.46	2.70	0.13	0.28	0.64
A1013	0.09	0.12	0.45	4.45	n.d.	0.30	0.65
A1014	0.10	0.15	0.49	4.25	n.d.	0.31	0.65
B1002	n.d.	n.d.	0.43	1.21	0.67	0.09	0.36
B1009	n.d.	n.d.	0.07	1.29	0.48	0.06	0.35
B1010	n.d.	n.d.	0.06	1.03	0.40	0.05	0.34

TABLE F. (Table 2. From CAES 2009) Concentration (ng /ml) of Volatile Compounds in Headspace Over Crumb Rubber Samples Analyzed at CAES (average of two analyses per sample)

CAES also performed simulated weathering experiments on the crumb rubber samples to determine trends in organic compound emissions over time. The weathering test results show that, except for 4-(t-octyl)-phenol, all other detected volatile compounds significantly decreased in concentration after only 20 days of outdoor exposure. By the end of the eight week study, benzothiazole, butylated hydroxanisole and 4-(t-octyl)-phenol were detected at the highest concentrations. The results are shown in Table G. below.

Sample ID (week)	benzothiazole	1-methyl naththalene	2-methyl naphthalene	naphthalene	4-(t-octyl)- phenol	butylated hydroxyanisole
Т0	3.75	0.12	0.24	0.40	0.35	0.77
T1	1.95	0.05	0.09	0.12	0.28	0.45
T2	0.97	0.04	0.06	0.06	0.31	0.40
Т3	1.56	0.04	0.07	0.08	0.31	0.44
T4	1.77	0.04	0.08	0.08	0.30	0.43
T5	1.59	0.05	0.07	0.10	0.30	0.48
T6	1.20	0.04	0.06	0.05	0.25	0.36
T7	0.99	0.04	0.06	0.04	0.24	0.33
T8	1.17	0.05	0.05	0.06	0.23	0.41

TABLE G: (Table 9 from CAES, 2009) Concentrations (ng /ml) of Volatile Compounds in Headspace Over Crumb Rubber Samples Aged at CAES (average of two analyses per sample)

CAES also performed an SPLP test on the same seventeen samples of the crumb rubber infill material. The resulting leachate was then analyzed for metals and organic compounds. Based on communications with CAES, the leachate contained the same organic compounds that were identified in the head space analyses, however, only benzothiazole concentrations were estimated for the test. A summary of compounds detected and their concentrations are listed in Table H below. Based on these results, the predominant contaminant leaching from artificial turf fields is

zinc, followed by barium, manganese and lead. It should be noted some metals associated with tires and rubber products were not analyzed in this experiment, such as iron and vanadium.

In Table H, the values which exceed Connecticut's acute aquatic life criteria are highlighted in yellow. The summary shows that zinc is present in the leachate at concentrations about 500 times greater than the toxicity criteria. The leachate study indicates that there is a high potential for the artificial turf to leach acutely toxic levels of metals especially copper and zinc. Certain samples of crumb rubber also leached acutely toxic levels of cadmium, barium, manganese and lead.

	Benzothiazole	Cr	Mn	Ni	Cu	Zn	As	Cd	Ва	Pb
ug/l										
average	0.153	6.24	263.16	19.88	22.31	34170.5	3.35	1.60	313.88	11.57
80 th	0.209	11.28	348.45	27.48	20.41	50269.8	1.50	0.50	463.62	7.77
Max	0.268	31.47	1443.19	57.15	143.32	71535.5	27.94	17.01	502.91	69.90
Acute	21333.000	323	616	260.5	14.3	65	340	2.02	2000	30
Chronic	3200.000	42		28.9	4.8	65	150	1.35	220	1.2

TABLE H

8. DISCUSSION

a) Potential Contaminants

The analyses performed on the stormwater samples were focused on compounds previously documented to leach from crumb rubber material derived from recycled tires, primarily volatile organic compounds, semi-volatile organic compounds and metals. The stormwater samples were also assessed for whole effluent toxicity. Other potential parameters of concern in the stormwater were identified from the results of the CAES off-gassing and leaching laboratory studies performed on the crumb rubber material.

b) Organic compounds

The stormwater generated at the artificial turf sites did not include many readily identifiable, volatile or semi-volatile organic compounds, as evidenced by no detections using EPA Methods 625 and 624. Additional semi-volatile compound investigations were performed on the stormwater samples, resulting in nine tentatively identified compounds and thirteen unidentified chromatograph peaks. Benzothiazole, which CAES also detected in their leaching analysis, was identified in the September 27 and October 7, 2009 samples from Field A at concentrations of 1 and 4.9 ug/l, respectively. Of the compounds that were tentatively identified such as benzothiazole, pentanoic acid, and thiopenes, none of these compounds are considered particularly toxic to aquatic organisms at the estimated concentrations.

Although it is not possible to determine the potential impact of the unidentified semi-volatile compounds, it is important to note, that the six highest concentrations of the unidentified semi-volatile compounds detected (150 ug/l, 28 ug/l, 14 ug/l, 12 ug/l, 10 ug/l and 9.5 ug/l) did not correspond to the three acutely toxic samples of stormwater determined in the study.

The results from the CAES laboratory headspace, leaching and simulated weathering tests suggest that benzothiazole, 4-(t-octyl)-phenol, 1-methyl naphthalene, 2-methyl naphthalene, naphthalene, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are the likely semi-volatile compounds to be found in the stormwater discharge from artificial turf fields. The test results also suggest that Benzothiazole, 4-(t-octyl)-phenol and butylated hydroxytoluene (BHT) would be the most persistent SVOCs in the crumb rubber as the artificial turf fields aged.

Comparing the VOCs and SVOCs results to EPA's Maximum Contaminant Levels for drinking water (MCLs) and DEP's Remediation Standards Regulations, Section 22a-133k-1 through 22a-133k-3of the Regulations of Connecticut State Agencies (June 1996), no exceedences of groundwater standards have been identified.

Based on our results, no VOCs or SVOCs have been identified as risks to surface and groundwater resources.

c) Metals

The laboratory leaching analyses performed by CAES as part of the State of Connecticut Artificial Turf Study detected the following metals: arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), lead (Pb), manganese (Mn), nickel (Ni), and zinc (Zn). Zinc was present in concentrations orders of magnitude greater than the other metals. CAES's leaching analyses indicated that both copper (Cu) and zinc (Zn) concentrations exceeded acute aquatic toxicity criteria for 80% of the tests, with limited (<20%) exceedences of acute criteria for cadmium (Cd), manganese (Mn) and lead (Pb).

The stormwater analysis results show that the artificial turf fields in our study leached significantly less contaminants, specifically zinc and copper, than predicted by the CAES leaching test results. The lower metal concentrations observed in the stormwater could be a result of alkaline pHs, the weathering (2-4 years since installation) of the crumb rubber infill, or the conservative approach inherent in the SPLP methodology.

The stormwater analysis results showed that zinc was the only metal to exceed the acute aquatic toxicity criteria (65 ug/l), with one exceedence at each of the three study fields. The overall mean concentration of zinc in the stormwater samples analyzed was 84 ug/l, with a maximum of 260 ug/l and a minimum of 10 ug/l. The stormwater analysis results showed that aluminum, barium, copper and zinc all exceeded chronic aquatic toxicity criteria at least once during the sampling. Since chronic toxicity criteria apply to four days of continuous discharge, these exceedences are not of significant concern for these intermittent discharges.

No metal concentrations exceeded EPA's and DEP's drinking water standards. However, the concentration of zinc in three stormwater samples did exceed the surface water protection

criteria of 123 ug/l established in the Appendix D to Sections 22a-133k-1 through 22a-133k-3 of the Regulations of Connecticut State Agencies Surface-water Protection Criteria for Substances in Ground Water (June 1996). Since the mean concentration of zinc in the stormwater samples (84 ug/l) is below the surface water protection criteria, the discharge from the artificial turf fields to groundwater is intermittent, and zinc is immobilized in soils by adsorption, absorption and precipitation, the potential for impacts to surface waters being recharged by this groundwater is minimal.

Based on our results, zinc has been identified as a potential risk to surface waters. No other metals have been identified as a risk to groundwater or surface waters.

9. ENVIRONMENTAL RISK ASSESSMENT

a) Potential Risk to Surface Waters

The only potential risk to surface waters identified in the stormwater collected from the artificial turf fields is zinc, since it was the only chemical parameter that was detected above the acute aquatic life criteria of 65 ug/l. Acute toxicity is assumed to occur when the zinc concentration in-stream exceeds 65ug/l for one hour in any three year period. In three of the eight stormwater samples analyzed, zinc concentrations were detected at 130, 150 and 260 ug/l, well above the acute aquatic life criteria. It is important to note, that the three stormwater samples with acutely toxic levels of zinc were also determined to exhibit aquatic toxicity (<90% survivorship) for both species *Pimephales promelas* and *Daphnia pulex* in the whole effluent toxicity testing.

Other than the acute aquatic toxicity criteria, there are no specific zinc standards or permit limits that are applicable to artificial turf fields. For industrial sites that discharge to surface waters, DEP has set a stormwater general permit guideline (Section 5 (c) (1) (F) (i) of the General Permit) for total zinc of 200 ug/l. This industrial stormwater total zinc guideline assumes a default 5:1 dilution factor for the receiving surface water at the 7Q10 flow. The 7Q10 is the lowest flow expected to occur for seven continuous days at a frequency of every 10 years. The 7Q10 flow is the critical low flow used when evaluating toxicity and toxic impacts (CT WQS 2002). Based on the results of our study, the stormwater discharges from artificial turf fields would not be expected to regularly exceed this zinc limit.

However, the estimated 7Q10 flows for the receiving watercourse from Fields A, C and D did not meet the 5:1 dilution factor for stormwater discharges from artificial turf football fields (57,600 square feet), assuming a one inch rain storm over one hour with direct discharge to the watercourse over an hour. It is important to note, that this a conservative approach, which assumes the watercourse receives no other stormwater runoff from its representative watershed. For the three receiving streams in the study, the highest dilution factor at the DEP estimated 7Q10 flow was equivalent to a 0.14:1 ratio. Given this dilution ratio of the receiving streams in the study, there is a potential for acute toxicity due to zinc loading.

Since zinc concentrations in stormwater from artificial turf fields may pose a risk to surface waters, especially to smaller watercourses, it is important to note that these fields are not the only sources of stormwater runoff in any given watershed. During the sampling at Fields A, C and D,

DEP staff observed stormwater runoff, generated by acres of parking lots, roadways and buildings, entering the same drainage systems that collected runoff from the artificial turf fields. Based on these observations, it appears that stormwater runoff from the artificial turf fields is combined with the runoff from the adjacent impervious surfaces prior to ultimate discharge at the site.

This is an interesting phenomenon, since the levels of zinc in urban runoff are comparable to the concentrations detected in the discharge from artificial turf fields. It has been well established that urban runoff contains many contaminants such as nutrients, suspended solids, hydrocarbons and heavy metals, including zinc. The average concentration of zinc in urban stormwater runoff has been estimated at 129 ug/l in recent studies (Smullen 1998). EPA's Nationwide Urban Runoff Program (NURP) has collected runoff data and determined that for urban sites the median concentrations of total zinc ranged from 179 -226 ug/l. The National Stormwater Quality Database (NSQD, version 1.1), dated February 16, 2004, compiled zinc concentration data in runoff from various land uses across the United States, which is shown in Table L below.

TABLE I	
Land Uses	Zinc Total (ug/l) Median
Overall (All Uses)	117
Residential	73
Mixed Residential	99.5
Commercial	150
Mixed Commercial	135
Industrial	210
Mixed Industrial	160
Institutional	305
Freeways	200
Mixed Freeways	90
Open Space	40
Mixed Open Space	88
CT Artificial Turf Stormwater	84 (mean)

Since zinc concentrations in the runoff from artificial turf fields are consistent with those associated with urban runoff, it would be a logical step to apply the same best management practices (BMPs) to mitigate the toxicity effects to surface waters. The 2005 Stormwater Management Manual for Western Washington specifically recommends the following BMPs to remove dissolved zinc (and other metals) from stormwater runoff: stormwater treatment wetlands, wet ponds, infiltration structures, compost filters, sand filters and biofiltration structures. The 2004 Connecticut Stormwater Quality Manual suggest the same measures since these treatment practices incorporate biological removal mechanisms that are more effective in removing pollutants than systems that strictly rely on gravity or physical separation of particles in the stormwater. The 2004 Connecticut Stormwater Quality Manual further recommends a treatment train approach, which provides a series of BMPs each designed to provide targeted pollution control benefits.

The University of New Hampshire Stormwater Center has field tested many of these stormwater BMPs that demonstrate significant removal of dissolved zinc. For example, the Retention Pond, Subsurface Gravel Wetland and Bioretention System (Bio II) stormwater treatment measures, over a two year period, removed between 90% and 100% of the soluble zinc, based on a median annual influent Event Mean Concentrations (EMC) of 60ug/l (see Appendix B for fact sheets). The three highest zinc concentrations detected in the stormwater from artificial turf fields in our study were 130, 150 and 260 ug/l, respectively. Assuming 80% removal of zinc from the stormwater prior to discharge to surface waters, all three of the highest zinc concentrations would meet the acute aquatic toxicity criteria (26, 30 and 52 ug/l, respectively). To mitigate the risk to aquatic life and surface waters, the DEP strongly recommends that the aforementioned stormwater best management practices be incorporated into the design of the drainage system for artificial turf fields.

10. ENVIRONMENTAL RISK ASSESSMENT IN RECENT STUDIES

Several other studies were conducted to determine the risk to surface waters and groundwater from the stormwater discharges from artificial turf fields. Since artificial turf fields can either discharge to groundwater or surface water, the ecological risks must be evaluated for both potential pathways. This was confirmed by Nillson et al (2008), that drainage from artificial turf fields can enter the environment by either seeping through the underlying soil and potentially contaminate the groundwater, or alternatively, by stormwater runoff entering the adjacent watercourses.

a) Overall Surface Water Contamination Risk

1) Organic Compounds

The studies conducted by Plesser (2004) indicated that concentrations of the common polycyclic aromatic hydrocarbons (PAHs) anthracene, fluoranthene and pyrene, as well as nonylphenols, would exceed the limits for freshwater specified in the Canadian Environmental Quality Guidelines. Torsten (2005) from the Norwegian Institute for Water Research (2005) also predicted that concentrations of alkyl phenols and octylphenol in particular would exceed the limits for environmental effects in the scenario which was allowed a 10:1dilution of run-off. Torsten (2005) further determined that the leaching of chemicals from the materials in the artificial turf system would decrease slowly, so that environmental effects could occur over many years. However, Torsten (2005) anticipated only localized impacts due to the relatively small concentration of the leaching pollutants. The SVOCs analysis of the stormwater in our study, utilizing EPA Method 625, and a specific search for 4-(t-octyl)-phenol, detected no anthracene, flouranthene, pyrene or standard phenol compounds.

Kolitzus (2006) detected no appreciable PAHs concentrations in the runoff analyzed from artificial surface systems. The PAHs that were found above detection limit were ubiquitous substances in the environment. The PAH concentrations in the unbound supporting layer were determined to be in the range of analytic determination limit (0.02 μ g/l). The sum of all 16 PAHs was 0.1 to 0.3 μ g/l. Similarly, in a recent New York study (Lim et al 2009), no standard organics were detected utilizing EPA Method 624 and 625 in the stormwater sample collected. The

SVOC analysis of the stormwater in our study, utilizing EPA Method 625, detected no standard PAHs.

In surface systems with EPDM and recycled rubber infill, Kolitzus (2006) found several aromatic amino complexes and benzothiazole detected in the range of $10 - 300 \mu g/l$. These concentrations were similar to the results of simulated normal tire wear tests. Lim et al (2009) reported a semi-volatile rubber compound, benzothiazole, at 1,000 ug/l as a Tentatively Identified Compound (TIC) in one stormwater sample. The SVOC analysis of the stormwater in our study, utilizing EPA Method 625, detected no standard aromatic amines, but further TIC analysis did detect identified and unidentified organic compounds. Benzothiazole was detected in two stormwater samples at estimated concentrations of 1.0 and 4.9 ug/l, respectively, which is significantly lower than concentrations found by Lim et al (2009). The Connecticut acute and chronic toxicity benchmark for benzothiazole are 21,333 ug/l and 3,200 ug/l, respectively, based on available toxicity information. The estimated concentrations of benzothiazole are insignificant compared to both the acute and chronic toxicity criteria. Also, a number of unidentified organic compounds were detected during the SVOC TIC analysis at concentrations ranging from 1 ug/l to 150 ug/l, with a median concentration of 6.6 ug/l. The 10/7/09 Field C stormwater sample, which the maximum unidentified compound concentration of 150 ug/l was detected in, was not found to be acutely toxic.

The results from our study appear to be consistent with the results from Kolitzus (2006) and Lim et al (2009), including the detection of benzothiazole in the stormwater samples. Overall, our study did not identify any organic compounds at sufficient concentrations to be considered a potential contamination risk to surface waters.

2) Metals

Based on our analysis of the stormwater collected from the artificial turf fields, zinc is the only metal detected in concentrations which could pose a risk to surface water resources. This finding is consistent with many recent studies which analyzed leachate and stormwater from crumb rubber infill, which indicate that zinc is the primary contaminant of concern coming from artificial turf sites. In sites with limited dilution both the Norwegian Pollution Control Authority (2005) and Verschoor (2007) conclude that the concentration of zinc in the leachate would exceed applicable water quality standards. The Norwegian Pollution Control Authority classifies artificial turf runoff as Environmental Quality Class V (very strongly polluted water) due to the high concentration of zinc in the leachate. The risk assessment conducted by Norwegian Institute for Water Research (2005) shows that the concentration of zinc poses a significant local risk of environmental effects in surface water which receives run-off from artificial turf fields.

Verschoor (2007) also conducted a risk assessment concluding that the estimated concentrations of zinc in the drainage water from artificial football fields to be between 1100-1600 ug/L. This concentration exceeded the Dutch legal criterion for surface water Maximum Permissible Chronic Concentration (MPC) of 40 ug/l by a factor of 27-40. Verschoor explained that drainage water concentrations would be diluted in the receiving surface waters, but indicated that zinc in "small ditches" could exceed MPA (Maximum Permissible Acute). Verschoor espoused a general discharge impact rule that only 10% of the permissible concentration of a contaminant (=

4 ug/l) may be consumed by a particular source. This would imply that the concentration of zinc in smaller receiving water would exceed the water quality criteria by a factor of 45-80. Verschoor identified zinc as a potential eco-toxicological risk to surface water, but did indicate that if the crumb rubber were to be replaced by infill materials with a lower zinc emission, the pollutant concentrations in runoff and adjacent surface water should drop quickly.

Lim et al (2009) conducted a mathematical assessment of the risks to aquatic life from crumb rubber leachate based on the SPLP test results for zinc, aniline and phenol. Based on these concentrations, NYSDEC's Division of Fish, Wildlife and Marine Resources concluded that there may be a potential aquatic life impact due to zinc being release from crumb rubber solely derived from truck tires. However, New York State also concluded that an impact is unlikely if the crumb rubber material is from mixed tires and concentrations of zinc from a column test were used rather than the SPLP. It should be noted, that for the column test to better simulate field conditions, the material in the column must reflect local soil conditions and pH.

Several recent studies analyzed stormwater samples collected from artificial turf fields for metals. Lim et al (2009) and Kolitzus (2006) detected concentrations of zinc at 59.5 ug/l and 20 ug/l, respectively. Milone and MacBroome (2008), conducted field studies and detected zinc in the stormwater from four of the six sampling dates , with a maximum concentration of 31 ug/l which is below acute aquatic toxicity criteria of 65 ug/l.

The zinc concentrations in our stormwater samples were significantly higher than those of Lim, Kolitzus and Milone and MacBroom, with three of the eight the samples tested exceeding acute surface water quality criteria. If not mitigated with appropriate stormwater treatment measures, the zinc concentrations found in our study could contribute to the environmental risk of aquatic organisms in surface waters.

3) Aquatic Toxicity

Wik (2006) studied the toxicity of various tire brands and determined that different formulas for rubber contributed to varying degrees of toxicity in the leachates to *Daphnia magna*. By conducting a toxicity identification evaluation on various tire leachates (EPA 600/6-91/003), Wik determined that although zinc was prevalent, the semi-volatile non polar organics also heavily influenced the toxicity of the resulting leachate. Passing the simulated tire leachates through carbon filters was the only manipulation that consistently reduced toxicity. Compared to the results from Milone and MacBroom (2008), this study reported significantly higher levels of both aquatic toxicity and zinc. This study found that three of the eight stormwater samples tested were acutely toxic to both the invertebrate (*Daphnia pulex*) and the fathead minnow (*Pimephales promelas*). These acutely toxic samples directly coincided with the exceedences of the acute aquatic life criteria for zinc. Consequently, zinc seems to be the primary pollutant of concern. This study indicates that there is risk associated with whole effluent toxicity and zinc.

b) Overall Groundwater Contamination Risk

Stormwater from the fields can impact groundwater directly by percolating through the artificial turf via an "open" underground drainage system (perforated pipes, coarse bedding materials, stone trenches). The stormwater discharges to the underlying soil layers, and ultimately, enters

the ground water. Based on the nature of the underlying soil and the depth to groundwater, the field stormwater is likely to physically and chemically interact with a mineral soil layer (vadose zone) prior to encountering groundwater. This stormwater/soil interaction would be affected by pH, volume of stormwater and soil characteristics, such as moisture, chemistry, mineralogy, soil texture, hydraulic conductivity and drainage class. These interactions would likely influence the concentrations of contaminants found in the groundwater.

There are two primary concerns with the contamination of groundwater in the environment - the threat to drinking water and the threat to surface water resources via groundwater recharge. Several other studies were conducted on the crumb rubber fill from 2004 to 2009; (Plesser(2004), Nillson et al (2008), the Norwegian Institute for Water Research (2005), Verschoor, A.J., RIVM Report 601774011/2007(2007) Study, (Milone & MacBroom Study 2007),NYSDEC May 2009 an Kolitzus, Hans J. (2006). These studies compared the relative concentration of contaminants found in laboratory leachates and/or artificial turf generated stormwater with various drinking water and aquatic life criteria.

1) Organic Compounds

It should be noted that substances, to a varying degree, will be absorbed by the sand/clay layers which the drainage water passes. Although Nillson et al (2008) found that concentrations of nonylphenols in the contact water from leaching tests were in the order of 20-800 times above the threshold values for drinking water, it was uncertain as to whether this concentration would be significant in the actual groundwater. The EPA aquatic life acute criteria for nonylphenol for freshwater and saltwater resources are 28 ug/l and 7.0 ug/l, respectively. It is important to note that nonyphenol has been associated with the disruption of fish endocrine systems at concentrations below EPA's criteria. No data was available for phthalates and nonylphenols under such realistic conditions from lysimeter data. Nillson determined that the assessment of the impact on water systems also requires more realistic lysimeter tests or measurements on drainage water from artificial turf fields over time.

Plesser (2004) compared leachate results with Canadian Environmental Quality Guidelines for ground water. Groundwater guidelines are developed for both protection of drinking water and protection of surface water via groundwater recharge. Plesser identified anthracene, fluoranthene, pyrene and nonylphenols as compounds in the leachate that could exceed the more protective criteria for groundwater. Plesser also concluded that analyzing possible paths and changes in leaching properties over time is necessary to determine the degree to which the concentrations of these compounds are actually harmful to people and the environment.

Lim et al (2009) conducted a leachate (SPLP) test on rubber crumble material, and analyzed for zinc, phenol and aniline. The results from recent leaching studies indicated a potential for release of aniline, benzothiazole, phenol, and zinc to the groundwater. However, concentrations of the organic contaminants analyzed were below levels that would impose a risk to drinking water. Lim also collected 32 groundwater samples from wells installed downgradient of four artificial turf fields and analyzed them for SVOCs, including aniline and benzothiazole, using SW-846 Method 8270C. The wells were installed in sandy textured soils with depth to the groundwater ranging from 8.3 to 70 feet. All test results were below the limit of detection for all

groundwater samples analyzed. Based on test results of 32 samples, no organics were detected in the groundwater at the turf fields.

Our results are consistent with the leachate and groundwater sampling results in Lim et al (2009). The concentrations of organic compounds in our study did not exceed groundwater protection criteria.

2) Metals

In general, metals are immobilized in soils by adsorption, absorption and precipitation. All of these, mechanisms impede movement of the metals to ground water. Metal-soil interaction is such that when metals are introduced at the soil surface, downward transportation does not occur to any great extent unless the metal retention capacity of the soil is overloaded, or metal interaction with the associated waste matrix enhances mobility.

Zinc is the most prevalent contaminant in the leachate and stormwater studies. In several of these studies, zinc concentrations measured in leachate exceeded drinking water standards. Most of the zinc in soil is absorbed to the soil as zinc hydroxide or oxide and does not dissolve in water. Zinc does show moderate mobility under relatively acid soil conditions (pH 5–7) because of increased solubility and formation of soluble complexes with organic lignands (Elliott et al. 1986; Stevenson and Fitch, 1986; Klamberg et al. 1989). Zinc is retained in an exchangeable form at low pH in iron and manganese oxide dominated soils but becomes non-exchangeable as the pH was increased above 5.5 (Stahl and James, 1991). Therefore, depending on the acidity of the soil and water, some zinc may reach groundwater.

Nillson et al (2008) determined that although leachate concentrations of zinc were in excess of the drinking water quality standards, similar concentrations were not observed in (field) lysimeter tests. Nillson concluded that the concentration of zinc in the lysimeter tests were a more accurate reflection of zinc in the groundwater and, therefore, zinc concentrations would not exceed drinking water standards.

Lim et al (2009) was the only study that did not report concentrations of zinc in the SPLP leachate that exceeded drinking water standards.

Verschoor (2007) concluded that, for the majority of situations, the risks of zinc to public health are minimal since it is not very toxic to humans and the World Health Organization (WHO) drinking water criteria was not exceeded in tests. However, Verschoor (2007) did note that in sandy areas discharges to groundwater may exceed Dutch Intervention Values by a factor of 1.5 to 2.2. In sandy soils, infiltration of water with dissolved zinc will result in weak binding of zinc to the soil matrix and could cause protection criteria to be exceeded by a factor of 12. Verschoor concluded that zinc was a potential eco-toxicological risk to groundwater and soil.

Plesser (2004) and CAES (2009) indicated that zinc was the most likely contaminant to exceed drinking water standards in the leachate. All studies indicate that, although compounds were present in the leachate or stormwater, it was uncertain as to what affect the underlying soils and groundwater would have on the actual concentration of contaminants in the groundwater. Actual groundwater testing may be necessary to determine the impact.

The leachate results reported by CAES showed zinc concentrations up to ten times the drinking water standards and up to 500 times the surface water protection criteria. Our study detected concentrations of zinc in the stormwater significantly lower than CAES results, with no exceedences of drinking water standards and no significant concerns for groundwater quality. It is important to note that no groundwater samples were collected for our study.

11. CONCLUSIONS

The DEP concludes that there is a potential risk to surface waters and aquatic organisms associated with whole effluent and zinc toxicity of stormwater runoff from artificial turf fields. Zinc concentrations in the stormwater may cause exceedences of the acute aquatic toxicity criteria for receiving surface waters, especially smaller watercourses. The DEP suggests that use of stormwater treatment measures, such as stormwater treatment wetlands, wet ponds, infiltration structures, compost filters, sand filters and biofiltration structures, may reduce the concentrations of zinc in the stormwater runoff from artificial turf fields to levels below the acute aquatic toxicity criteria. Individual artificial turf field owners may want to evaluate the stormwater drainage systems at the fields and the hydrologic and water quality characteristics of any receiving waters to determine the appropriateness of a stormwater treatment measure.

This study did not identify any significant risks to groundwater protection criteria in the stormwater runoff from artificial turf fields. It is important to note, that the DEP study did not directly collect and analyze groundwater at these artificial turf fields. Consequently, this conclusion regarding consistency with groundwater protection criteria is an extrapolation of the stormwater results collected and the evaluation of data presented in recent studies, such as Nillson et al (2008) and Lim et al (2009). To make a final conclusion regarding the overall risk from exposure to groundwater affected by stormwater runoff from artificial turf fields, further sampling and analysis of groundwater at the artificial turf fields would be required.

12. REFERENCES

2004 Connecticut Stormwater Quality Manual http://www.ct.gov/dep/cwp/view.asp?a=2721&q=325704

2005 Stormwater Management Manual for Western Washington http://www.ecy.wa.gov/pubs/0510029.pdf

Connecticut Department of Environmental Protection. 2002. Water Quality Standards.

Delaware Riverkeeper. Fact Sheet. Artificial/Synthetic Turf http://www.delawareriverkeeper.org/newsresources/factsheet.asp?ID=50

Elliott, H.A., Liberati M.R., Huang C.P., 1986. Competitive adsorption of heavy metals by soils. J. Environ. Qual.15:214-219.

Hofstra, U. 2007 "Environmental and health risks of rubber infill: rubber crumb from car tyres as infill on artificial infill. INTRON.

http://www.intron.nl/files/INTRON%20report%20rubber%20infill%20summary.pdf

Karathanasis, A.D. 1999. Subsurface migration of copper and zinc mediated by soil colloids. Soil Science Society of America Journal 63:830-838. http://soil.scijournals.org/cgi/content/full/63/4/830#BIB1986

Kemi Swedish Chemical Agency. 2007. Synthetic Turf. http://www.kemi.se/upload/Trycksaker/Pdf/Faktablad/FbSyntheticTurf.pdf

Klamberg H., Matthes G., Pekdeger A.1989. Organo–metal complexes as mobility-determining factors of inorganic toxic elements in porous media. In: <u>Inorganic contaminants in the vadose</u> <u>zone</u>.:3-17. Ed.: Bar-Yosef et al B. New York: Springer-Verlag,:3-17.

Kolitzus, Hans J. 2006. Investigation and assessment of synthetic sports surfaces in Switzerland including athletic and soccer facilities. IST Switzerland. <u>http://isss.de/conferences/Dresden%202006/Technical/HJK%20Schweiz.pdf</u>.

Lim and Walker. 2009. An assessment of chemical leaching, releases to air and temperature at crumb –rubber infilled synthetic turf fields. New York State Department of Environmental Conservation, New York State Department of Health . http://www.dec.ny.gov/docs/materials_minerals_pdf/crumbrubfr.pdf

Lindsay, W. L. 1979. Chemical equilibria in soils. John Wiley and Sons. New York.

Mattina, M.I., Isleyn, M., Berger, W., Ozdemir, S. 2007. Examination of crumb rubber produced from recycled tires. The Connecticut Agricultural Experiment Station., New Haven, CT. <u>http://www.ct.gov/caes/lib/caes/documents/publications/fact_sheets/examinationofcrumbrubbera</u> <u>c005.pdf</u>.

Milone and MacBroom, Inc., Evaluation of the Environmental Effects of Synthetic Turf Athletic:(December 2008) <u>http://www.actglobalsports.com/media/Milone_MacBroom.pdf</u>

Nelson, S.M., Mueller, G., Hemphill, D.C. 1994. Identification of tire leachate toxicants and a risk assessment of water quality effects using tire reefs and canals. Bull. Environ. Contam. Toxicol. 52: 574-581. <u>http://www.particleandfibretoxicology.com/content/2/1/1</u>

Nillson et al.(2008). Mapping, emissions and environmental and health assessment of chemical substances in artificial turf. Survey of Chemical Substances in Consumer Products, No. 100. Danish Technological Institute. Danish Ministry of The Environment. Environmental Protection agency. Denmark.

http://www2.mst.dk/udgiv/publications/2008/978-87-7052-866-5/pdf/978-87-7052-867-2.pdf

Pitt, R., Maestre, A. and Morquecho, R. 2004. The National Stormwater Quality database (NSQD, version 1.1). Department of Civil Engineering. Universuity of Alabama. Tuscaloosa.

Plesser, Thale.2004. Potential health and environmental effects linked to

artificial turf systems – Final Report", Norwegian Building Research Institute, Oslo, September 10, 2004. <u>http://www.isss.de/conferences/Dresden%202006/Technical/NBI%20Engelsk.pdf</u>.

Smullen, J. and K. Cave. 1998. "Updating the U.S. Nationwide Urban Runoff Quality Database". 3^{rd} International Conference on Diffuse Pollution, August 31 – September 4, 1998. Scottish Environmental Protection Agency, Edinburgh, Scotland.

State of Connecticut. 1988. Regulations of Connecticut State Agencies Section 22a-430-3and-4

State of Connecticut. 1996. Regulations of Connecticut State Agencies Section 22a-133k-1-3.

Stevenson F.J., Fitch A. 1986. Chemistry of complexation of metal ions with soil solution organics. In: <u>Interactions of soil minerals with natural organics and microbes</u>.: SSSA Special Publ. 17:29-58. Eds. Huang P.M., Schnitzer M. Madison, WI

Torsten,Kallqvist. 2005. Environmental risk assessment of artificial turf systems. Report 5111-2005. Norwegian Institute for Water Research. Oslo. http://www.isss.de/conferences/Dresden%202006/Technical/NIVA%20Engelsk.pdf

Tucker, Ray, 2007. Ground rubber: potential toxicity to plants. Media News NCDA& CS:Agrinoimics Divison .April <u>http://www.ncagr.gov/agronomi/pdffiles/rubber.pdf</u>

United States Environmental Protection Agency., 1983. <u>Results of the Nationwide Urban Runoff</u> <u>Program. Volume 1- Final</u>. Washington D.C.

United States Environmental Protection Agency., 1991. <u>Technical Support Document for Water</u> <u>Quality Based Toxics Control</u>. EPA/505/2-90-001. Washington D.C.

United States Environmental Protection Agency., 1991. <u>Methods for Aquatic Toxicity</u> <u>Identification Evaluations: Phase 1 Toxicity Characterization Procedures.</u> EPA-600/6-91/003. Washington D.C.

University of New Hampshire Stormwater Research Center. <u>http://www.unh.edu/erg/cstev/fact_sheets/index.html</u>

Verschoor, A.J.(2007), Leaching of Zinc from rubber infill in artificial turf (football pitches) RIVM Report 601774011 Bilthoven..: http://www.parks.sfgov.org/wcm_recpark/SPTF/Verschoor.pdf

Washington State Department of Ecology, 2005. <u>Stormwater Management Manual for Western</u> <u>Washington</u>. Publication number 05-10-029-05-10-033. Olympia.

Wik. AS. and Dave G. 2006. Acute toxicity of tire wear material to *Daphnia magna* – variability and toxic components. Chemosphere. 64(10):1777–1784. http://gupea.ub.gu.se/dspace/handle/2077/17762?mode=simple