The Effect of the Shoe–Surface Interface in the Development of Anterior Cruciate Ligament Strain


Hospital for Special Surgery, New York City, NY, USA

Introduction The shoe–surface interface has been implicated as a possible risk factor for anterior cruciate ligament (ACL) injuries; however, the relationship between ACL strain and the shoe–surface interface has yet to be quantified. The purpose of this study is to develop a biomechanical cadaveric model to evaluate the effect of various shoe–surface interfaces on ACL strain. We hypothesize that there will be a significant difference in ACL strain between different shoe–surface combinations when a standardized rotational moment (a simulated cutting movement) is applied to an axially loaded lower extremity.

Materials and methods Eight fresh-frozen cadaveric lower extremities were thawed, and the femurs were potted with the knee in 30° of flexion. Each specimen was placed in a custom-made testing apparatus, which allowed axial loading and tibial rotation but prevented femoral rotation. A strain gauge (Microstrain Inc., Williston, VT, USA) was then placed in the anteromedial bundle of the ACL.